Novogene

서비스

식물 및 동물 De Novo 시퀀싱

De novo 시퀀싱은 참조 서열 (reference sequence) 없이 특정 생물의 초기 유전체 서열을 생성하는 방법입니다. De novo 시퀀싱을 통해 InDel, CNV, SV와 같은 복잡한 유전체 변이를 쉽게 식별할 수 있으며, 진화 및 집단의 역사, 농업 육종, 유전적 변이 분석 등에서도 중요한 가치를 가집니다.

Novogene은 풍부한 실험 운영 경험과 생물정보학 분석 역량을 바탕으로, 정확하고 신속하며 포괄적인 종 특성 분석 서비스를 제공합니다. 또한, Novogene의 end-to-end(원스톱) 서비스는 매우 빠른 결과 제공을 보장합니다.

응용 분야 (Applications)

개체 수준 연구:

집단 수준 연구:

노보진 서비스의 장점 및 특징

사양: DNA 샘플 준비 지침

Sample Type

Amount (Qubit®)

Purity

Genomic DNA

≥ 100 ng

A260/280=1.8-2.0;

no degradation,

no contamination

Genomic DNA

(PCR-free)

≥ 1.2 μg

HMW Genomic DNA

≥ 3 μg

(Concentration ≥ 40 ng/μL)

A260/280=1.8-2.0;

A260/230=1.5-2.6;

NC/QC=1.00-2.20

Fragments should be ≥ 30 kb

HMW Genomic DNA

≥ 8 μg

(Concentration ≥ 100 ng/μL)

A260/280=1.75-2.0;

A260/230=1.4-2.6;

NC/QC=0.95-3.00

Fragments should be ≥ 30 kb

사양: 시퀀싱 및 분석

Sequencing Parameters

Illumina NovaSeq System

PacBio Revio System

Nanopore PromethION

Read Length

Paired-end 150 bp

N50>15 kb, long read lengths up to 25 kb(CCS)

Average > 17 kb

Recommended Sequencing Depth

For genome survey or assembly polishing: ≥ 50×

For genome assembly: ≥ 50×

Standard Analysis

• K-mer analysis
• GC content analysis
• Repeat content rate evaluation
• Heterozygous rate evaluation
• Genome size evaluation

• Long-read assembly
• Assembly Statistics
• Gene completeness evaluation

Genome Annotation

• Repeat prediction
• Structure prediction
• Function prediction
• Noncoding RNA prediction

프로젝트 진행 과정

노보진은 프로젝트의 모든 과정에서 최고 수준의 품질과 전문적인 서비스를 제공하여 연구자들이 신뢰할 수 있는 결과를 얻을 수 있도록 지원합니다. 모든 단계는 엄격한 과학적 기준에 따라 설계되고 수행되며, 시퀀싱 데이터의 정확성과 신뢰성을 보장하기 위해 철저한 품질 관리(QC) 절차가 적용됩니다.

전체 워크플로우는 샘플 준비 및 정량화, DNA 절단 및 라이브러리 제작, 라이브러리 품질 검증, 시퀀싱, 생물정보 분석 등의 주요 단계로 이루어져 있습니다.

프로젝트 진행 과정

[1]https://www.nature.com/articles/jhg2013114

Featured Publications of Animal and Plant De novo Sequencing

Science Advances Date: April 2020 IF: 12.804   DOI: https://www.science.org/doi/10.1126/sciadv.aay3240
Reference information
Sturtevant D, Lu S, Zhou ZW, Shen Y, Wang S, Song JM, Zhong J, Burks DJ, Yang ZQ, Yang QY, Cannon AE, Herrfurth C, Feussner I, Borisjuk L, Munz E, Verbeck GF, Wang X, Azad RK, Singleton B, Dyer JM, Chen LL, Chapman KD, Guo L. The genome of jojoba (Simmondsia chinensis): A taxonomically isolated species that direct wax ester accumulation in its seeds. Sci Adv. 2020 Mar 11;6(11):eaay3240. doi: 10.1126/sciadv.aay3240. PMID: 32195345; PMCID: PMC7065883.
Plant Biotechnology JournalIssue Date:2019 IF: 6.84   DOI: https://onlinelibrary.wiley.com/doi/10.1111/pbi.13310

Reference Information

Song X, Wang J, Li N, Yu J, Meng F, Wei C, Liu C, Chen W, Nie F, Zhang Z, Gong K, Li X, Hu J, Yang Q, Li Y, Li C, Feng S, Guo H, Yuan J, Pei Q, Yu T, Kang X, Zhao W, Lei T, Sun P, Wang L, Ge W, Guo D, Duan X, Shen S, Cui C, Yu Y, Xie Y, Zhang J, Hou Y, Wang J, Wang J, Li XQ, Paterson AH, Wang X. Deciphering the high-quality genome sequence of coriander that causes controversial feelings. Plant Biotechnol J. 2020 Jun;18(6):1444-1456. doi: 10.1111/pbi.13310. Epub 2020 Feb 5. PMID: 31799788; PMCID: PMC7206992.
Molecular Plant Date: 2019 IF: 9.326  DOI: https://www.cell.com/molecular-plant/fulltext/S1674-2052(19)30131-5?
Reference information
Zhao Q, Yang J, Cui MY, Liu J, Fang Y, Yan M, Qiu W, Shang H, Xu Z, Yidiresi R, Weng JK, Pluskal T, Vigouroux M, Steuernagel B, Wei Y, Yang L, Hu Y, Chen XY, Martin C. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Mol Plant. 2019 Jul 1;12(7):935-950. doi: 10.1016/j.molp.2019.04.002. Epub 2019 Apr 15. PMID: 30999079.
Molecular Ecology ResourcesIssue Date: July 2019 IF: 7.049  DOI: https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13086

Reference information 

Ran Z, Li Z, Yan X, Liao K, Kong F, Zhang L, Cao J, Zhou C, Zhu P, He S, Huang W, Xu J. Chromosome-level genome assembly of the razor clam Sinonovacula constricta (Lamarck, 1818). Mol Ecol Resour. 2019 Nov;19(6):1647-1658. doi: 10.1111/1755-0998.13086. PMID: 31483923.
Plant Biotechnology JournalIssue Date: 2019 IF: 6.84   DOI: https://onlinelibrary.wiley.com/doi/10.1111/pbi.13205
Reference information
Huang L, Feng G, Yan H, Zhang Z, Bushman BS, Wang J, Bombarely A, Li M, Yang Z, Nie G, Xie W, Xu L, Chen P, Zhao X, Jiang W, Zhang X. Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. Plant Biotechnol J. 2020 Feb;18(2):373-388. doi: 10.1111/pbi.13205. Epub 2019 Jul 30. PMID: 31276273; PMCID: PMC6953241.

롱리드 시퀀싱 (Long Read Sequencing)

Assembly Statistics

Figure 1: Grain Aphid genome A/T/G/C content statistics.

Assembly Evaluation-BUSCO assessment

Figure 2: BUSCO assessment results.

Note:
C: Complete BUSCOs;
S: Complete and single-copy BUSCOs;
D: Complete Duplicated BUSCOs;
F: Fragmented BUSCOs; M:Missing BUSCOs;
n: Total BUSCO groups searched

Assembly Evaluation- CEGMA Assessment

Figure 3: Sequencing depth distribution

X-axis: sequencing depth/X; y-axis, proportion of bases in the genome

Figure 4: GC content and depth distribution

Note:
X-axis: GC contents;
y-axis: sequencing depth.
Upper: GC content distribution.
Lower right: sequencing depth distribution.

Genome Annotation

Structure Prediction

Figure 5: Venn diagram of gene set evidence support.

Augustus, GlimmerHMM, SNAP, Geneid and Genscan are used in De novo gene structure prediction.

Function Prediction

유전자 구조로부터 예측된 단백질 서열을 기존 단백질 데이터베이스와 정렬한 결과, 전체 유전자 중 95.8%의 기능을 예측할 수 있는 것으로 나타났습니다.

Figure 6: Venn diagram of gene function annotation

Short Read Sequencing

K-mer Analysis

Kmer=17analyses and genome size evaluation.

Kmer

Depth

n_kmer

Genome_size(M)

Revised Genome_size(M)

Heterozygous_rate(%)

Repeat_rate(%)

17

67

203,660,880,738

3,039.71

3,020.12

0.46

60.41

Note:
(1) K-mer:Selected K-mer length.
(2) Depth:The expected value of K-mer depth.
(3) n_K-mer:The total number of K-mer from SOAPdenovo.
(4) Genome size(M): The genome size in Mb estimated by formula: Genome Size=K-mer_num/Peak_depth.
(5) Revise Genome size(M): Revised genome size after error correction from wrong K-mer.
(6) Heteozygous ratio: The percent of heteozygous positions.
(7) Repeat:Calculated by the percentage of K-mer numbers after 1.8-fold of the main peak of total K-mer numbers.
Note: The repeat here is a mathematically repeated sequence but not a repeat element with certain biological functions.

Figure 7: Distribution of K-mer number/ type frequency and depth

Note:
X-coordinate is K-mer depth. Y-coordinate is the frequency of each K-mer depth.

Like this:

THANK YOU FOR YOUR INTEREST

DOWNLOAD NOW!




    * Mandatory fields.